

Learning objective :

To know the functions of each nutrient in plant

Primary or major nutrients: are those nutrients required relatively in large quantities by the plants for its growth and development. Ex: N, P and K.

Secondary nutrients: are those nutrients which are required by plants in moderate amounts and given secondary importance in its supply and management.

Ex: Ca, Mg and S.

Micronutrients: The nutrients which are utilized by plants in relatively smaller quantities for their growth and development, but these are equally important & essential to plants as macronutrients.

Ex: Fe, Mn, Zn, Cu, B, Mo, Cl and Ni.

Plant Nutrients

Sixteen elements are considered essential for plants. They are grouped based on their relative abundance in plants.

Many non-essential elements are also found in plants that account for over 60 elements. All is absorbed when soil solution is rich in Allions. When plant materials is burned, the remaining plant ash contains all the essential and non-essential elements except C, H, O, N, S. Macro nutrients are absorbed in 30-100 times in proportion to that of micronutrients.

1 (3/4)

Essential Nutrients

Non-	Macronutrients		Micronutrients	
mineral Nutrients	Primar y	Secondary	By all plants	Some

05.

C	N	Са	Fe	В	Na
Н	Р	Mg	Mn	CI	Со
0	К	S	Zn	Мо	Va
			Cu		Ni
					Si

Chemical nature

Metals	K, Ca, Mg, Fe, Mn, Zn, Cu,
Non-metals	C, H, O, N, P, S, Cl

The plant content of mineral elements is affected by many factors and their concentration in crops varies considerably.

Nutrient		Relative concentration (Times)	Concentration (%)
Primary	N, K	400-1000	1-1.5
	Ρ	30	0.1-0.3
Secondar y	Ca, Mg	100-200	0.2-0.5
	S	30	0.1
Micro	Fe, Mn, B	1-2	0.002-0.01
	Others	<1	<0.002

Plant Nutrients

Concentration, Mobility, forms, functions

A mineral element is considered essential to plant growth and development if the element is involved in plant metabolic functions and the plant cannot complete its life cycle without the element. Terms commonly used to describe level of nutrients in plants are

Deficient

When the concentration of an essential element is low enough to limit yield severely and distinct deficiency symptoms are visible then that element is said to be deficient. Extreme deficiencies can result in plant death. With moderate or slight deficiencies, symptoms may not be visible, but yields will still be reduced.

Critical range

The nutrient concentration in the plant below which a yield response to added nutrient occurs. Critical level or ranges vary among plants and nutrients but occur somewhere in the transition between nutrient deficiency and sufficiency.

NUTRIENT CONCENTRATION IN TISSUE

Sufficient

Concentration range in which added nutrients will not increase yield but can increase nutrient concentration. The term luxury consumption is used to describe nutrient absorption by the plant that does not influence yield.

Excessive or toxic

When the concentration of essential or other elements is high enough to reduce plant growth and yield then it is said to be toxic. Excessive nutrient concentration can cause an imbalance in other essential nutrients, which also can reduce yield

	Forms of nutrients for	
Plant absorption		Concentration and plants yield
Ν	NH_4^+ , NO_3^- , organic N	
Р	$H_2PO_4^-$ (Primary) and HPO_4^{2-} (Secondary) Orthophosphates	Yield is severely affected when a nutrient is deficient. When deficiency is corrected, growth
К	K⁺	increases more rapidly. Under severe deficiency,
Са	Ca ⁺⁺	rapid increase in growth with added nutrient can
Mg	Mg ⁺⁺	cause a small decrease in nutrient concentration due to dilution effect. This is called the
S	SO_3^- (Sulphite) and SO_4^-	Steenberg effect
Fe	Fe ⁺⁺ (Ferrous), Fe ⁺⁺⁺ (Ferric)	
Mn	Mn ⁺⁺ (Manganous) and Mn ⁺⁺⁺ (Manganic)	8)
Zn	Zn ⁺⁺	Luxury consumption
Cu	Cu ⁺ (Cuprous) and Cu ⁺⁺ (Cupric)	Nutrient sufficiency occurs over a wide
В	BO_3^- and other forms	concentration range, wherein yield is unaffected.
Мо	MoO ₄ (Molybdate)	Increase in nutrient concentration above the critical range indicates that the plant is absorbing
CI	CI	nutrient above that needed for maximum yield.

This luxury consumption is common in most plants. Elements absorbed in excessive quantities

can reduce plant yield directly through toxicity or indirectly by reducing concentration of other nutrient below critical ranges.

Nutrient	Functions
	Major nutrients
Nitrogen	Basic component of proteins and chlorophyll (the pigment that gives plants their green colour). Plays an essential role in plant growth. Also feeds microorganisms in the soil
Phosphorus	Plays an important role in root growth and promotes the establishment of young plants, flowering, fruiting and ripening, photosynthesis, respiration and overall plant growth.
Potassium	Moves through the plant. Promotes the movement of sugars, turgor and stem rigidity. Also increases the plant's overall resistance to cold, diseases, insect pests, etc. Promotes the formation of flower buds, the hardening-off of woody plants and fruiting.
Secondary nutrients	
Calcium	Plays a vital role in plant structure, because it is part of cell walls and holds them together. Promotes the development of the root system and the ripening of fruit and seeds. Found in the growing parts of plants (apex and buds).
Magnesium	An important part of chlorophyll. Helps fruit ripen and seeds germinate. Reinforces cell walls and promotes the absorption of phosphorous, nitrogen and sulphur by plants
Sulphur	A component of several proteins, enzymes and vitamins. Contributes to chlorophyll production. Helps plants absorb potassium, calcium and magnesium.
Micronutrients	

Functions of nutrients in plants:

Iron	Essential to chlorophyll production. Also contributes to the formation of some enzymes and amino acids.
Boron	Essential to overall plant health and tissue growth. Promotes the formation of fruit and the absorption of water.
Manganese	Promotes seed germination and speeds plant maturity. Plays an important role in photosynthesis by contributing to chlorophyll production. Essential for nitrogen assimilation and protein formation.
Molybdenum	Essential for nitrogen assimilation by plants and nitrogen fixation by bacteria. This means that it is needed for the production of nitrogen-based proteins.
Chlorine	Stimulates photosynthesis.
Copper	Activates various enzymes. Also plays a role in chlorophyll production
Zinc	Plays an important role in the synthesis of proteins, enzymes and growth hormones.
Nickel	Key component of selected enzymes involved in N metabolism and biological N fixation.
Beneficial elements	
Silicon	Strengthens cell walls, energy transfer & drought resistance Reduces water loss & prevents fungal infection.
Cobalt	Essential in N fixation
Sodium	Na replaces K in certain functions in halophytes plants For C4 plants having dicarboxylic photosynthetic pathway
Vanadium	Essential for green algae

Forms of elements in Mineral soil

Macro elements are available in (1) Solid (2) Cations (3) Cations in soil solution

Nutrients	Mineral / solid	Cations	Soil solution as ions
N	Organic compounds and Amino acids	NH_4^+	NH4 ⁺ , NO ₂ ⁻ , NO ₃ ⁻
Р	Organic compounds, nucleic acid and inorganic compounds. Ca, Fe, Al, PO ₄ 's	-	$H_2PO_4^-$, HPO_4^-
К	Feldspar, mica, silicate clays	K⁺	K⁺
Са	Feldspar, hornblende, lime stone	Ca ²⁺	Ca ²⁺
Mg	Mica, Hornblende, lime stone	Mg ²⁺	Mg ²⁺
S	Organic sources – protein, amino acids	-	HSO ₄ ⁻ , SO ₃ ²⁻
	inorganic sources – Gypsum, pyrites .	-	SO4 ²⁻

Forms of nutrient element absorbed by plants

Nutrient element	Forms absorbed
С	Mainly through leaves - CO ₂
Н	HOH (Hydrogen from H_2O) – H^+
0	CO_2 mainly through leaves – O_4^{2-} , OH^- , CO_3^{2-}
Ν	NH4 ⁺ , NO3
К	K ⁺
Са	Ca ²⁺
Mg	Mg ²⁺
S	SO4 ²⁻
Fe	Fe ²⁺ (Ferrous), Fe ³⁺ (ferric)
Mn	Mn ²⁺ (Manganous), Mn ⁴⁺ (Manganic)

Zn	Zn ²⁺
Cu	Cu ⁺ (cuprous), Cu ²⁺ (Cupric)
Со	CO ²⁺
Na	Na⁺
Si	Si (OH) ₄
CI	Cl
В	H ₃ BO ₃ (Boric acid) H ₂ BO ₃ ⁻ (Borate)
Мо	Mo O ₄ ²⁻

References:

Tisdale,S.L.,Nelson,W.L.,Beaton,J.D.,Havlin,J.L.1997.Soil fertility and Fertilizers.Fifth edition, Prentice hall of India Pvt.Ltd,New Delhi.

<u>http://www.ctahr.hawaii.edu/oc/freepubs/pdf/pnm3</u>. From:J. A. Silva and R. Uchida, eds. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, ©2000

http://edis.ifas.ufl.edu/hs1191

Questions to ponder

1)How will you differentiate between N and K deficiencies of corn visually?

- 2) What is luxury consumption?
- 3)Which element is absorbed both in anionic and cationic forms?
- 4) Which element is specifically involved in nitrate reduction in plants?

5)Name the nutrients whos deficiencies are first exhibited in the apical region of the growing plant?